Posidonia is not a seaweed! It belongs to the angiosperms (Angiospermae) i.e. flowering plants. Mediterranean Posidonia (Posidonia oceanica) is a species of aquatic flowering plant (a seagrass) in the Posidoniaceae family, endemic to the Mediterranean Sea (Boudouresque et al., 1984).
Botanical representation of Posidonia oceanica
The first fossils of European Posidonia date back to the Cretaceous (Posidonia cretacea), 145 to 166 million years ago (Aires et al., 2011; Hemminga and Duarte, 2000) and have changed relatively little since then (Den Hartog, 1970).
Posidonia grows between the surface and a depth of 30 to 40 metres. It forms large meadows (Picard and Molinier, 1952), constituting key ecosystems that play a major ecological role (Campagne et al., 2015; Gacia and Duarte, 2001; Mangos et al., 2010), even though they only represent 1% of the surface area of the mediterranean basin (Boudouresque et al., 2006).
P. oceanica plays an important role in the carbon cycle, particularly in the storage of anthropogenic carbon on the ocean floor. It is estimated that total carbon production by P. oceanica grasslands is 3.5 million tonnes, of which 2.4 million tonnes is exported and stored (Pergent et al., 1997). In addition, there are numerous economic possibilities for using P. oceanica: for coastal fishing, as a natural fertiliser when it washes up on beaches, for wastewater treatment, for carbon storage, for coastal protection, etc. (El Zrelli et al., 2023).
It reproduces both sexually (with flowers and seeds) and asexually (by spreading rhizomes).
Today's cold-tolerant (and therefore heat-sensitive) genotypes were probably selected during the recent Plio-Pleistocene cooling. Indeed, today temperatures above 27◦C cause significant flowering (Diaz-Almela et al., 2007; Marín-Guirao et al., 2019; Ruiz et al., 2018).
The ability of P. oceanica plants to reproduce sexually when water temperature is >27◦C could lead in the future to the selection of heat-loving plants (as heat-sensitive clones decline), with an associated increase in genetic variability in the species gene pool (Martínez-Abraín et al., 2022).
'Diagram showing P. oceanica reproduction and Meditrranean temperture over time in support of the idea that current clones may represent the selection of cold-tolerent ecotypes of this marine plant' (Martínez-Abraín et al., 2022).
Anthropogenic activity has been shown to have a negative impact on the development and maintenance of Posidonia meadows (McDonald et al., 2023).
Despite legislation, Posidonia meadows are declining rapidly. The estimated regression of meadows amounts to 34% over the last 50 years, showing that this widespread phenomenon should be attributed mainly to the cumulative effects of multiple stress factors (Telesca et al., 2015). This decline is due to local impacts (physical impacts, construction, eutrophication) and global impacts (climate change, presence of invasive species, storms, Labyrintula infections, sea level rise, temperature increase) (Bianchi, 1997; Bianchi and Morri, 2004; Casoli et al, 2021; Chefaoui et al., 2017; Jevrejeva et al., 2012; Jordà et al., 2012; Levermann et al., 2013; Mancini et al., 2019, 2023; Marbà et al., 1996, 2014; Micheli et al., 2005; Montefalcone et al., 2007; Ruiz and Romero, 2003; shukla et al., 2019; Telesca et al., 2015).
'Coastline with regression of Posidonia oceanica meadows' (Telesca et al., 2015).
P. oceanica recovers very slowly from these disturbances and could take decades to centuries to recover from its losses. Given their vital role in the ecological structure of the coast, it is crucial to protect these meadows from human fragmentation to ensure the resilience of these ecosystems in the face of the climate crisis (Marco-Méndez et al., 2024).
Posidonia oceanica washed up on the beach after a storm, Var, France. Personal picture, March 2025.
Bibliography
Aires, T., Marbà, N., Cunha, R., Kendrick, G., Walker, D., Serrão, E., Duarte, C., and Arnaud-Haond, S.: Evolutionary history of the seagrass genus Posidonia, Mar. Ecol. Prog. Ser., 421, 117–130, https://doi.org/10.3354/meps08879, 2011.
Bianchi, C. N.: Climate change and biological response in the marine benthos, Proceedings of the Italian Association for Oceanology and Limnology, 12, 3–20, 1997.
Bianchi, C. N. and Morri, C.: Climate change and biological response in Mediterranean Sea ecosystems–a need for broad-scale and long-term research, Ocean Challange, 13, 32–36, 2004.
Boudouresque, C. F., Perret-Boudouresque, M., and Knoepffler-Peguy, M.: INVENTAIRE DES ALGUES MARINES BENTHIQUES DANS LES PYRÉNÉES-ORIENTALES (MÉDITERRANÉEE, FRANCE), vie et Milieu/Life and environment, 49–51, 1984.
Boudouresque, C. F., Bernard, G., Bonhomme, P., Charbonnel, E., Diviacco, G., Meinesz, A., Pergent, G., Pergent-Martini, C., Ruitton, S., and Tunesi, L.: Préservation et conservation des herbiers à Posidonia oceanica, Préservation et conservation des herbiers à Posidonia oceanica., 2006.
Campagne, C. S., Salles, J.-M., Boissery, P., and Deter, J.: The seagrass Posidonia oceanica : Ecosystem services identification and economic evaluation of goods and benefits, Marine Pollution Bulletin, 97, 391–400, https://doi.org/10.1016/j.marpolbul.2015.05.061, 2015.
Casoli, E., Mancini, G., Ventura, D., Belluscio, A., and Ardizzone, G.: Double Trouble: Synergy between Habitat Loss and the Spread of the Alien Species Caulerpa cylindracea (Sonder) in Three Mediterranean Habitats, Water, 13, 1342, https://doi.org/10.3390/w13101342, 2021.
Cebrian, J. and Duarte, C. M.: Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean, Aquatic Botany, 70, 295–309, https://doi.org/10.1016/S0304-3770(01)00154-1, 2001.
Chefaoui, R. M., Duarte, C. M., and Serrão, E. A.: Palaeoclimatic conditions in the Mediterranean explain genetic diversity of Posidonia oceanica seagrass meadows, Sci Rep, 7, 2732, https://doi.org/10.1038/s41598-017-03006-2, 2017.
Den Hartog, C.: The sea-grasses of the world, North-Holland. Amsterdam., 1970.
Diaz‐Almela, E., Marbà, N., and Duarte, C. M.: Consequences of Mediterranean warming events in seagrass ( Posidonia oceanica ) flowering records, Global Change Biology, 13, 224–235, https://doi.org/10.1111/j.1365-2486.2006.01260.x, 2007.
El Zrelli, R., Hcine, A., Yacoubi, L., Roa-Ureta, R. H., Gallai, N., Castet, S., Grégoire, M., Courjault-Radé, P., and Rabaoui, L. J.: Economic losses related to the reduction of Posidonia ecosystem services in the Gulf of Gabes (Southern Mediterranean Sea), Marine Pollution Bulletin, 186, 114418, https://doi.org/10.1016/j.marpolbul.2022.114418, 2023.
Gacia, E. and Duarte, C. M.: Sediment Retention by a Mediterranean Posidonia oceanica Meadow: The Balance between Deposition and Resuspension, Estuarine, Coastal and Shelf Science, 52, 505–514, https://doi.org/10.1006/ecss.2000.0753, 2001.
Hemminga, M. A. and Duarte, C. M.: Seagrass ecology, Cambridge university press, Cambridge, 2000.
Jevrejeva, S., Moore, J. C., and Grinsted, A.: Sea level projections to AD2500 with a new generation of climate change scenarios, Global and Planetary Change, 80–81, 14–20, https://doi.org/10.1016/j.gloplacha.2011.09.006, 2012.
Jordà, G., Marbà, N., and Duarte, C. M.: Mediterranean seagrass vulnerable to regional climate warming, Nature Clim Change, 2, 821–824, https://doi.org/10.1038/nclimate1533, 2012.
Levermann, A., Clark, P. U., Marzeion, B., Milne, G. A., Pollard, D., Radic, V., and Robinson, A.: The multimillennial sea-level commitment of global warming, Proc Natl Acad Sci USA, 110, 13745–13750, https://doi.org/10.1073/pnas.1219414110, 2013.
Mancini, G., Casoli, E., Ventura, D., Jona-Lasinio, G., Criscoli, A., Belluscio, A., and Ardizzone, G. D.: Impact of the Costa Concordia shipwreck on a Posidonia oceanica meadow: a multi-scale assessment from a population to a landscape level, Marine Pollution Bulletin, 148, 168–181, https://doi.org/10.1016/j.marpolbul.2019.07.044, 2019.
Mancini, G., Mastrantonio, G., Pollice, A., Jona Lasinio, G., Belluscio, A., Casoli, E., Silvia Pace, D., Ardizzone, G., and Ventura, D.: Detecting trends in seagrass cover through aerial imagery interpretation: Historical dynamics of a Posidonia oceanica meadow subjected to anthropogenic disturbance, Ecological Indicators, 150, 110209, https://doi.org/10.1016/j.ecolind.2023.110209, 2023.
Mangos, A., Bassino, J.-P., and Sauzade, D.: Valeur e ́conomique des benefices soutenables provenant des ecosystèmes marins méditerranéens. Centre d’activite ́s re ́gionales du PNUE/PAM., Les Cahiers du Plan Bleu, 8, 2010.
Marbà, N., Duarte, C. M., Cebrian, J., Gallegos, M. E., Olesen, B., and Sand-Jensen, K.: Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline, Marine Ecology Progress Series, 137, 203–213, 1996.
Marbà, N., Díaz-Almela, E., and Duarte, C. M.: Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009, Biological Conservation, 176, 183–190, https://doi.org/10.1016/j.biocon.2014.05.024, 2014.
Marco-Méndez, C., Marbà, N., Amores, Á., Romero, J., Minguito-Frutos, M., García, M., Pagès, J. F., Prado, P., Boada, J., Sánchez-Lizaso, J. L., Ruiz, J. M., Muñoz-Ramos, G., Sanmartí, N., Mayol, E., Buñuel, X., Bernardeau-Esteller, J., Navarro-Martinez, P. C., Marín-Guirao, L., Morell, C., Wesselmann, M., Font, R., Hendriks, I. E., Seglar, X., Camps-Castella, J., Bonfill, E., Requena-Gutiérrez, A., Blanco-Murillo, F., Aguilar-Escribano, J., Jimenez-Gutierrez, S., Martínez-Vidal, J., Guillén, J. E., Cefalì, M. E., Pérez, M., Marcos, M., and Alcoverro, T.: Evaluating the extent and impact of the extreme Storm Gloria on Posidonia oceanica seagrass meadows, Science of The Total Environment, 908, 168404, https://doi.org/10.1016/j.scitotenv.2023.168404, 2024.
Marín‐Guirao, L., Entrambasaguas, L., Ruiz, J. M., and Procaccini, G.: Heat‐stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica, Molecular Ecology, 28, 2486–2501, https://doi.org/10.1111/mec.15089, 2019.
Martínez-Abraín, A., Castejón-Silvo, I., and Roiloa, S.: Foreseeing the future of Posidonia oceanica meadows by accounting for the past evolution of the Mediterranean Sea, ICES Journal of Marine Science, 79, 2597–2599, https://doi.org/10.1093/icesjms/fsac212, 2022.
Mayot, N., Boudouresque, C.-F., and Leriche, A.: Unexpected response of the seagrass Posidonia oceanica to a warm-water episode in the North Western Mediterranean Sea, Comptes Rendus. Biologies, 328, 291–296, https://doi.org/10.1016/j.crvi.2005.01.005, 2005.
McDonald, A. M., McDonald, R. B., Cebrian, J., and Sánchez Lizaso, J. L.: Reconstructed life history metrics of the iconic seagrass Posidonia oceanica (L.) detect localized anthropogenic disturbance signatures, Marine Environmental Research, 186, 105901, https://doi.org/10.1016/j.marenvres.2023.105901, 2023.
Micheli, C., Paganin, P., Peirano, A., Caye, G., Meinesz, A., and Bianchi, C. N.: Genetic variability of Posidonia oceanica (L.) Delile in relation to local factors and biogeographic patterns, Aquatic Botany, 82, 210–221, https://doi.org/10.1016/j.aquabot.2005.03.002, 2005.
Montefalcone, M., Albertelli, G., Morri, C., and Bianchi, C. N.: Urban seagrass: Status of Posidonia oceanica facing the Genoa city waterfront (Italy) and implications for management, Marine Pollution Bulletin, 54, 206–213, https://doi.org/10.1016/j.marpolbul.2006.10.005, 2007.
Pergent, G., Romero, J., Pergent-Martini, C., Mateo, M. A., and Boudouresque, C. F.: Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica., Marine Ecology, Progress Series, 139–146, 1994.
Pergent, G., Rico-Raimondino, V., and Pergent-Martini, C.: Fate of primary production in Posidonia oceanica meadows of the Mediterranean, Aquatic Botany, 59, 307–321, https://doi.org/10.1016/S0304-3770(97)00052-1, 1997.
Picard, J. and Molinier, R.: Recherches sur les herbiers de Phanérogames marines du littoral méditerranéen français., Masson, 1952.
Ruiz, J. M. and Romero, J.: Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica, Marine Pollution Bulletin, 46, 1523–1533, https://doi.org/10.1016/j.marpolbul.2003.08.021, 2003.
Ruiz, J. M., Marín-Guirao, L., García-Muñoz, R., Ramos-Segura, A., Bernardeau-Esteller, J., Pérez, M., Sanmartí, N., Ontoria, Y., Romero, J., Arthur, R., Alcoverro, T., and Procaccini, G.: Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica, Marine Pollution Bulletin, 134, 49–54, https://doi.org/10.1016/j.marpolbul.2017.10.037, 2018.
shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, S., Ferrat, M., Haughey, E., Luz, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J.: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems., Intergovernmental Panel on Climate Change (IPCC)., 2019.
Telesca, L., Belluscio, A., Criscoli, A., Ardizzone, G., Apostolaki, E. T., Fraschetti, S., Gristina, M., Knittweis, L., Martin, C. S., Pergent, G., Alagna, A., Badalamenti, F., Garofalo, G., Gerakaris, V., Louise Pace, M., Pergent-Martini, C., and Salomidi, M.: Seagrass meadows (Posidonia oceanica) distribution and trajectories of change, Sci Rep, 5, 12505, https://doi.org/10.1038/srep12505, 2015.
May 2025